
APPENDIX C: ROD Primitives & Tasks

The echo primitive simply copies its input data into a reply primitive. Both the input and output
data are unstructured.

This primitive sets a mask, which determines which types of error messages the DSPs report
back to the host processor.

struct SET_ERRMSG_MASK_IN {
UINT32 errMsgMask;

};
struct SET_ERRMSG_MASK_OUT {

UINT32 errMsgMask;
};

errMsgMask : If DEFAULT (0xFFFFFFFF) is used as the input value, the primitive returns the
 current mask being used to mask error messages; at initialization every error is
not masked. If any other value is input, that sets the mask; the new mask is returned by the DSP
via a reply primitive. Currently there are three error types defined: level 0, 1 & fatal errors,
corresponding to bits 28, 29 and 30 respectively.

Pause the execution of a primitive list. List execution will resume when the
RESUME bit is set in the command register.

Page 1 of 37

Primitive Name & Description Prim. ID Prim. Version
ECHO
Primitive “ping” command. 0x00 100

Primitive Name & Description Prim. ID Prim. Version
SET_ERRMSG_MASK
Sets an error mask. 0x01 100

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
PAUSE_LIST
Pauses a primitive list.

0x02 100

APPENDIX C: ROD Primitives & Tasks

Event Trap Setup is called to initiate trapping on a SDSP. Before trapping can start, the SDSP
must be coordinated with the router; this coordination can only be done via the MDSP. Hence
Event Trap Setup is common to both types of DSPs. However, when run, the MDSP primitive
executes a copy of itself on each requested SDSP, and thus the primitive only need be sent to the
MDSP by the host.

struct EVENT_TRAP_SETUP_IN {
UINT32 slvBits, numberOfEvents, timeoutInUsec;
UINT32 extRouterSetup, distribute;
UINT32 releaseFrames, permitBackPressure, dataMode, sLink,
 format, trapStray, iterLimit;
UINT32 trapConfig[2], trapExclusionFlag[2], trapFunction[2],
 trapMatch[2], trapModulus[2], trapRemainder[2];

};
struct EVENT_TRAP_SETUP_OUT {

UINT32 errorCode;
};

TBD To Be determined-- A decision is pending for this parameter.

slvBits: A 4-bit bitfield; the bits correspond to the SDSPs on which trapping is to be set up; i.e.
 setting bit #0 means that the routine will set up the trapping on SDSP 0.

numberOfEvents: The number of events to collect; should be set to the pre-defined constant
 COLLECT_FOREVER (0). TBD.

timeoutInUsec: Determines how long the MDSP will wait, after sending a copy of the primitive
 on to a SDSP, before giving up and reporting an error.

extRouterSetup: Flag indicating that the router is set up independently; if set the MDSP will
 not write to the router ’s registers.

distribute: Controls distribution of trapping among the SDSPs. TBD, set to 0.

releaseFrames: Controls release of the data frames on the SDSPs in multi-frame events while
 processing is on-going. TBD, set to 0.

permitBackPressure: If set, allows the router to apply back-pressure to the EFB if a large event

Page 2 of 37

Primitive Name & Description Prim. ID Prim. Version
EVENT_TRAP_SETUP
Coordinate SDSP & router actions. 0x03 103

Primitive structures:

Input Arguments:

APPENDIX C: ROD Primitives & Tasks

 arrives and the SDSP has no place to store it (perhaps because it is
processing another large event). Setting this is not permitted if the ROD is in ATLAS data-
taking mode.

dataMode: A diagnostic flag. If set the router will send data frames (1 frame= 256 words) to the
 SDSP as they are filled. This flag is normally not set; see the text for a complete
 explanation.

sLink: If set, causes the router to behave like the S-Link and send all events on to the enabled
 SDSPs. The router will ignore inputs in the “config” and “match” fields, which
described
 below. The router will, however, use the settings in the modulus and remainder fields.

format: Controls the format of the events sent to the SDSPs. There are two formats, the normal
 and error formats. For detailed information on the formats see Section 3.3 of the
 ROD Operations Manual; a brief description appears below.

trapStray: TBD, set to 0.

iterLimit: TBD, set to 0.

trapConfig[2]: Controls trap configuration. There are 2 traps per SDSP; trap[0] is the primary
 trap and if only one trap is used, it must be this one. Traps can be set to IDLE,
or to trap ATLAS, ROD, TIM, or (if the slink field is set) SLINK events. If the sLink flag is set,
the routine sets the trap configuration to SLINK_EVT.

trapExclusionFlag[2]: Indicates that the trap will accept everything but the trap match field.
 TBD, set to 0.

trapFunction[2]: A 5-bit bitfield indicating which task(s) will process events from this trap on
 the SDSP(s). Five tasks are currently envisioned: histogramming, trapping,
run-time occupancy counting, error counting and link-resynchronization. For each task which
will process the event, a bit inside the bitfield must be set (histogramming bit 0). Tasks must be
set up separately (see Start Task).

trapMatch[2]: Specifies which event ID will trigger the trap; for example for ROD event
 trapping; setting a trap-match of 3 will send every event with ROD
 event type = 3 on to the SDSP.

trapModulus[2]: Controls the rate of trap triggering. A trap modulus of zero sets the trap up for
 a single event; a modulus of one will trap every event. Higher moduli will
 trap events according to the formula cnt%n == remainder.

trapRemainder[2]: The remainder in the formula given above.

Page 3 of 37

APPENDIX C: ROD Primitives & Tasks

errorCode: A reply is sent so that the MDSP can tell that the SDSP has set up its DMA
 parameters and other event trapping controls correctly. TBD.

When executed on a SDSP, Event Trap Setup sets up all the required DMA parameters for the
data transfer from the router FPGA, and organizes how the data will be processed; a separate,
slave-only primitive (Start Event Trapping) actually turns on the DMA engine, which thence-
forth will run automatically.

The router has four 4 kilobyte deep FIFOs, one for each SDSP. These are controlled by and
report status in four separate sets of control and status registers. The six dual trap setup registers
(trapConfig, etc.) are independently settable (with exceptions, described next) and control
trapping on the corresponding SDSP. The two traps must share the same data format, and if
either the dataMode or sLink flags are set they share those attributes too (i.e. both will receive
data in the “data mode,” or each will be configured as SLINK).

The router has two modes of operation, with two event types. In “data” mode, the router
simply waits until it has accumulated a frame’s worth (256 words) of data and then triggers the
DMA transfer to the SDSP. Though it represents the optimal packing of event data on the router,
data mode is used as a router-diagnostic mode since it has disadvantages from the DSP’s
perspective, in that the DSP must sift through the data as it arrives, looking for events, and it
must also wait for partly-filled router frames to fill completely before receiving any events in
them.

In the normal or “event-driven” mode, the router DSP FIFO will send a frame of data to its
DSP whenever it either a) fills up, or b) the router detects an end-of-fragment word
(0xE0F00000) at any point during frame filling. In the latter case above, the router will skip the
write pointer in the FIFO forward to the end of the frame, and place a special marker word in the
last word of the frame. (If the EOF is the last word of the frame, the router will skip forward an
entire extra frame and place the marker word there). Both the router and SDSP ignore the
intervening FIFO data (old data from previous events). The marker word is chosen such that it
cannot appear in event data. It has the format: 0100 0000 000t 111s wwww wwww wwww
wwww, where t indicates which router trap has triggered, s indicates the event error status (s = 1
 good event), and the lower half-word contains the event length in words. This allows the SDSP

to both receive and begin processing events as soon as possible, and, since events always occupy
an integer multiple of frames, the DSP can always easily tell when an event has finished
transferring into its memory and simultaneously determine the event status by searching the last
word of each incoming frame for the marker word.

Page 4 of 37

Output Arguments:

Comments:

Primitive Name & Description Prim. ID Prim. Version
SET_MEMORY
Set an area of the DSPs memory to input value. 0x04 100

APPENDIX C: ROD Primitives & Tasks

This is a utility primitive, which can clear areas of the targeted DSP’s memory (or set it to any
specified value).

struct SET_MEMORY_IN {
UINT32 *start, size, val;

};

start: The start of the memory section to be set.
size: The size of the memory section, in words.
val: The input value.

A utility primitive which copies one section of the targeted DSP’s memory to another.

struct COPY_MEMORY_IN {
UINT32 *source, *destination, size;

};

source: The start of the source memory section.
destination: The start of the destination memory section.
size: The number of words to be copied.

This primitive performs several standard memory tests on the DSP. The tests include a general
addressing test (write each memory address into itself), two checkerboard tests to check for

Page 5 of 37

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
COPY_MEMORY
Copy one area of DSP memory to another. 0x05 100

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
MEMORY_TEST
Perform a set of standard memory tests on the DSP. 0x06 102

APPENDIX C: ROD Primitives & Tasks

cross-talk (write a pattern of 0x55555555 0xAAAAAAAA or 0xAAAAAAAA 0x55555555 into
memory), and two tests for bad data lines: a floating one test (fill memory with zeros, in each
memory location float a 1 across bits 0-31) and a floating zero test (float a zero across a field of
ones).

struct MEMORY_TEST_IN {
UINT32 *start, size, repetitions[6], errorsBeforeFail, continueOnError;
UINT32 nReads, dmaFlag;

};
struct MEMORY_TEST_OUT {

UINT32 returnCode;
};

start: The start of the source memory section to be analyzed.

size: The section size in words.

repetitions[6]: The number of repetitions to do for each test. The 6th index is unused.

errorsBeforeFail: Defines the error tolerance of the DSP during each test. If, during a test, the
 number of errors exceeds this value, the test will exit with an error.

continueOnError: If set, the primitive will continue executing further tests if a given test has
 exited with an error. If not set, the primitive will exit with an error.

nReads: The number of reads which will be done on each word of memory, after the test
 pattern has been written to it. If any of these fail, the error count is incremented and
 the next word is tested.

dmaFlag: If set, during the floating 0 and floating 1 tests, a DMA will be done to write the test
 pattern. This speeds these long tests up somewhat.

On the ROD’s front panel , the MDSP has three LEDs which can be set by the user; labeled
ST0, ST1 and ST2. The SDSPs have one LED each (yellow, labeled SDSP0-SDSP3), which can
be set by the user. (Note: All LEDs on the front panel are described by the ROD Operations
Manual).

Page 6 of 37

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
SET_LED
Sets an LED on the ROD front panel 0x07 104

APPENDIX C: ROD Primitives & Tasks

struct SET_LED_IN {
UINT32 ledNum, ledState;

};

#define YELLOW_LED 0 #define OFF 0
#define GREEN_LED 1 #define ON 1
#define RED_LED 2 #define TOGGLE 2

ledNum: The ID of the LED to be set, as defined above.
ledState: The new LED state.

Flashes the desired LED.

struct FLASH_LED_IN {
UINT32 ledNum, period, numTimes;

};

ledNum: The ID of the LED to be set, as defined above.
period: The flashing period.
numTimes: The number of flashing cycles.

Associates the detector module whose configuration data is loaded into the PHYSICS module
configuration database in a given index with a set of TTC (Timing, Trigger & Control, i.e.
command) and formatter data links. The link data is either input from the primitive’s
parameters, or taken directly from the module’s configuration data. The corresponding index in
the moduleMaskData structure defined below is then loaded with the link data. In all
communications to & from the modules the DSPs will refer to this data. This primitive, like
Event Trap Setup, exists for both types of DSPs but the host should only send it to the MDSP.

Page 7 of 37

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
FLASH_LED
Sets an LED on the ROD front panel 0x08 103

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
MODULE_MASK
Associate a detector module with a set of command & data links. 0x0A 101

APPENDIX C: ROD Primitives & Tasks

The SDSP primitive has a different input format; the MDSP transfers the modules ’ link
definitions to the SDSPs upon command. The primitive also sets up and configures the initial
command link masks, mode-bits configuration and formatter configuration registers, for all the
modules attached to a ROD. For a more detailed description of these registers see the Rod
Operations Manual, Appendix A.

For the MDSP:
struct MODULE_MASK_IN {

UINT32 moduleNum, port, useStructSet, passOn, slvBits;
UINT32 cmdLine, dataLine[4];
UINT32 cfg, modMask[2], maskType, storage, maskSet;

};

For the SDSPs:
typedef struct ModuleMaskData {

UINT8 cmdLine;
UINT8 unused[3];
UINT8 dataLine[4];

} ModuleMaskData;

struct MODULE_MASK_IN {
ModuleMaskData moduleMaskData[N_TOTMODULES];

};

moduleNum: The module’s index in the configuration structure set. This is used in
conjunction
 with the cmdLine and dataLine arguments to set specific masks for a given
 module (typically for special cases).

port: Determines which serial port ’s associated registers will be configured (both MDSP serial
 ports have associated command link & mode-bits registers). Can be SP0 (0), SP1 (1), or
 SP_BOTH (2).
useStructSet: If set, the direct input parameters (moduleNum, cmdLine & dataLine[]) will
 be ignored. The routine will loop over all indices in the PHYSICS module
configuration structure set, determining which modules are defined and using the link
information found there to fill in the link information structure and configure the serial port
(SP0) registers.

passOn: If set, the routine assumes that the MDSP link information structure is fully defined,
 and will (only) loop over the desired SDSPs, passing on the completed structure.

slvBits: If passOn is set, this four-bit bitfield indicates which SDSPs the routine should send the
 link information to.

Page 8 of 37

Primitive structures:

Input Arguments:

APPENDIX C: ROD Primitives & Tasks

cmdLine: Indicates the command line used by the input module (index); for direct input. A
 value of DEFAULT_TTC (0x80) indicates that the module uses the default command
line for its index. SCT modules using an off-ROD redundant command line should set this to
OFF_ROD_TTC (0xff).

dataLine[4]: Indicates the formatter links used by the input module. Formatter links are
 defined as 0xFL, where F (four bits) indicates the formatter (0-7) and L (four bits)
is the link number within that formatter (i.e. the standard link header definition in event data). If
a link is not used, it can either be set to DATA_LINK_OFF (0xff) or be set to a value identical to
another link.

cfg: If set, the routine will ignore all the inputs above beyond the serial port; it will configure
 one or all of the ROD’s mask sets using the inputs described below.

modMask[2]: Bitfield defining which modules an UPDATE_MASK command applies to.

maskType: Defines the mask types to be set. The type can either be generic or specific, and
 different types are additive. See the text for details.

storage: Indicates how the ROD masks should be modified. Possible commands are: INIT, SET,
 UPDATE and STORE. See the text for details.

maskSet: Indicates which mask set should be altered.

The natural place to store the modules’ link configuration data is within the module
configuration database (structure array), and indeed the link information is stored there.
However, the SDSPs also need access to this information, and the module configuration data is
much too large to store on them. The simple link information structure (moduleMaskData)
stores the modules ’ link information and is referred to by both types of DSP.

Additionally, once the module configuration data has been loaded onto a ROD, the MDSP
software requires an initial set of command link, mode-bits and formatter configuration registers
to be defined and set up properly. The Module Mask primitive accomplishes this task.

The initial ROD mask set referred to above is one of eight such possible “mask configuration”
sets on the ROD. The first four sets of masks (0-3) are reserved for use with the MDSP software
when setting masks appropriately for sending events to the four SDSPs. The 4th mask set is user
defined, the 5th is the initial ON set described above, and the 6th and 7th sets are used both by
internal routines and can be user defined for short-term use.

Once the module data has been loaded, mask set is possible using the cfg flag. Generic masks,
such as COMMAND_LINK +DATA_LINK (+LINK_CFG), are used by all storage commands except

Page 9 of 37

Comments:

APPENDIX C: ROD Primitives & Tasks

UPDATE_MASK. For the latter, specific mask configurations must be used. Possible con-
figurations are COMMAND_LINK: ON or OFF; DATA_LINK: PLAY, SKIP, MASK or D1P1 (dump 1
event, play the next); LINK_CFG: ON or OFF, ENABLE or DISABLE.

Storage commands are used to manipulate the masks, The INIT_MASK command will initialize a
mask set, turning command links OFF, link configuration OFF, and data links (or mode bits—see
the Rod Operations Manual for a comprehensive description) to either MASK or SKIP, depending
on whether or not the ROD is in simulation mode, respectively. (For a description of simulation
mode, see the SET_ROD_MODE primitive). SET_MASK will set up the ROD to use the selected
mask set, UPDATE is discussed below, and STORE will store whatever is the current ROD mask
configuration into the mask set.

Using UPDATE_MASK, the routine can add a range of modules to a selected mask set in a specific
configuration. For example, to configure a mask set to allow a subset of modules to play out on
receiving a trigger, the set can be issued an UPDATE_MASK command for the modules defined by
the bitfield, with the maskType set to COMMAND_LINK_ON + DATA_LINK_PLAY. Then issuing a
SET_MASK command for that mask set will set all the necessary registers to allow data to be sent
and received by those modules only.

The LINK_CFG mask type is used internally during mask loading to turn on the appropriate
formatter links. Since the mode bits (set by DATA_LINK) associated with each data link control
data reception, typically the user can leave link configuration alone. Link configuration can also
be used for diagnostic purposes. If a link is disabled, mode bits will not be sent to that link
during the formatters ’ data collection. The module’s data links are turned on and off whenever
they are enabled or disabled; however subsequent on and off commands will set the link without
changing its enabled status.

Primitive lists execute one primitive from the list on each iteration through the main program
loop, and then exit. For long duration computation, several types of tasks are defined. Tasks are
routines on the DSP that remain continuously running until they’ve either completed or are
halted manually. Tasks for the MDSP focus on control of the ROD as a whole; tasks on the
SDSPs concentrate on data analysis. The individual tasks are described separately.

union TASK_STRUCTURES_IN {
struct HISTOGRAM_CTRL_TASK_IN histoCtrlTaskIn;

Page 10 of 37

Primitive Name & Description Prim. ID Prim. Version
START_TASK
Start a task on either the MDSP or one of the SDSPs. 0x0C 101

Primitive structures:

APPENDIX C: ROD Primitives & Tasks

struct MIRROR_TASK_IN mirrorMemoryTaskIn;
struct TRAP_REQ_TASK_IN trapRequestTaskIn;

struct HISTOGRAM_TASK_IN histogramTaskIn;
struct TRAP_TASK_IN trapTaskIn;
struct OCCUPANCY_TASK_IN occupancyTaskIn;
struct ERROR_TASK_IN errorTaskIn;
struct RESYNCH_TASK_IN resynchTaskIn;

};

struct START_TASK_IN {
UINT32 taskType, taskRevision, priority, completionFlag;
union TASK_STRUCTURES_IN taskStruct;

};

taskType: The ID of the task to run. See the task descriptions for IDs.

taskRevision: Like primitive revision numbers, the task’s revision number ensures that a task
 will not run using outdated input parameters.

priority: TBD. Set to 1.

completionFlag: Flag indicating whether the task will announce its completion inside the
 information buffer or not. TBD, task states are now monitored using the task
 status register.

taskStruct: Structure union which defines the inputs for the tasks.

Once a task has been started, it normally runs until completion. The Task Operation primitive
allows the host to stop a task before it would normally complete, to reset the task to its initial
state, to pause a task, or to resume a paused task. This primitive also allows the host to query the
task for output data, both while it is running and after it has been halted.

struct TASK_OPERATION_IN {
UINT32 taskType, taskOperation, data;

};

Page 11 of 37

Input Arguments:

Primitive Name & Description Prim. ID Prim. Version
TASK_OPERATION
Allows host intervention on a task. 0x0D 100

Primitive structures:

APPENDIX C: ROD Primitives & Tasks

#define TASK_STOP 0
#define TASK_PAUSE 1
#define TASK_RESUME 2
#define TASK_QUERY 3 // Not valid yet.
#define TASK_RESET 4

taskType: The ID of the task to run. See the task descriptions for IDs.

taskOperation: The operation to perform on the task; see the list above.

data: TBD, set to 0.

This primitive is used as a testing ground for code; typically it is used to prototype primitives
while their input and output arguments are undergoing flux.

struct TEST_IN {
UINT32 dataLen, *dataPtr;

};

Output: Variable length data, unstructured.

dataLen : The length of the following (unstructured) data. Typically in the test primitive, the
 first word which follows dataLen indicates the type of test (several may be resident
 at any given time).

dataPtr: The start of the unstructured data; this is a dummy pointer. The pointer type simply
 indicates that this is the start of one or more words of unstructured data.

This is a diagnostic primitive, which places text in one of the selected DSP’s text buffers.

Page 12 of 37

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
TEST
General testing primitive. 0x0E 100

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
WRITE_BUFFER
Text buffer testing primitive.

0x0f 101

APPENDIX C: ROD Primitives & Tasks

struct WRITE_BUFFER_IN {
UINT32 buffer;
char string[2396];

};

#define WRITE_BUFFER_ERR 0
#define WRITE_BUFFER_INFO 1
#define WRITE_BUFFER_DIAG 2
#define WRITE_BUFFER_XFER 3

buffer: The text buffer which will receive the input string

string: The input string.

Turns on the DMA engine, which transfers data from the router FPGA to the SDSP. The Event
Trap Setup primitive must be executed beforehand, as it sets up some necessary DMA
parameters.

Turns off the DMA engine, and resets the DMA registers.

Page 13 of 37

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
START_EVENT_TRAPPING
Initiate event trapping on a SDSP. 0x1000 101

Primitive Name & Description Prim. ID Prim. Version
STOP_EVENT_TRAPPING
Halt event trapping on a SDSP.

0x1001 100

APPENDIX C: ROD Primitives & Tasks

This primitive must be called before the DSP accumulates any histograms. The routine sets up a
control structure (in the SDSP’s fast memory), sets up the histograms and initializes them.

struct HISTOGRAM_SETUP_IN {
UINT32 *base, nBins;
UINT8 padding[2];
UINT8 dataType[2];
UINT8 binSize, unused[3];
UINT8 opt[4];
UINT32 validModules[2];
UINT32 moduleRangeMap[2][2];
MDAT32 *xPtr[2];

};

struct HISTOGRAM_SETUP_OUT {
UINT32 *ctrlPtr, *pulseCtrPtr, *varRangePtr;

}; };

#define HISTOGRAM_CONDENSED 1
#define HISTOGRAM_FULL 3

#define HISTOGRAM_8BIT 8
#define HISTOGRAM_16BIT 16
#define HISTOGRAM_32BIT 32

base: Pointer to the base of the histograms in memory. If the DEFAULT (0xFFFFFFFF) pointer is
 input, the routine will place the histograms starting at the lowest possible address.

nBins: The number of bins inside the histogram.

padding[2]: Obsolete, to be removed.

dataType[2]: This variable indicates the binning variable, e.g. ST_QCAL (SCT) or SCAN_VCAL
 (Pixel). It is used for fitting. The second index is obsolete and should be ignored.

binSize: The bin size, as defined above.

opt[4]: A set of histogramming options.
 SCT: opt[0] indicates either the block or slice histogram format (0 or 1 respectively).

Page 14 of 37

Primitive Name & Description Prim. ID Prim. Version
HISTOGRAM_SETUP
Sets up histograms on the SDSP.

0x1002 107

Primitive structures:

Input & Output Arguments:

APPENDIX C: ROD Primitives & Tasks

 (Note: Block histograms are unsuitable for the current ROD SDSP
 architecture & will be removed).
 opt[1] indicates the data format (condensed or expanded).

 Pixel: opt[0] is set if occupancy histograms are desired.
 opt[1] is set if time-slice histograms are desired.
 opt[2] is set if time-over-threshold histograms are desired. This option is divided
 into 2 sub-options: If bit 0 is set, the full TOT spectrum is histogrammed,
 and if bit 4 is set, a histogram is made for the TOT mean.
 opt[3]: indicates the # of events returned per L1A.

validModules[2]: A bitfield which indicates which modules will have histogram space reserved
 for them on the DSP. The bits correspond to the indices of the modules ’
 configuration data inside the MDSP’s module configuration database. The higher index is
 used by SCT only.

moduleRangeMap[2][2]: Two bitfields which indicate which range mappings modules will use.
 Range mapping is used by SCT only. The two range maps allow
 modules to independently scan across the binning variable using separate scanning ranges,
 e.g. the modules in map 0 scan across QCAL from 0.0 -> 10.0, while the modules in map 1
 scan across QCAL from 10.0 -> 0.0. This is used for load balancing during a scan.

xPtr[2]: Pointers to the two lists which define the scanning range (for fitting). The routine
 assumes that each list has nBins data points, each of which should be defined at the
 center of its bin. Again, the second list is used only by SCT. If the DEFAULT pointer is given,
 the corresponding list is contained in the body of the primitive, directly after the structure (or,
 for the 2nd list, after the first).

Output structure members: now obsolete.

While the MDSP is communicating with the SDSPs, direct host access to the SDSP memory is
not allowed, as there can be only one ROD bus master. If the host wishes to upload or download
data to/from the SDSP’s memory, it must use the MDSP as a way-station. (The exception to
this rule is if the host is accessing the histogram data stored on the SDSP; this data is much too
large to fit inside the MDSP primitive buffer and thus a special DMA transfer protocol is used).
Additionally, communications with the SDSPs is inherently more complicated on a Rev. E ROD,
and using the primitive ensures the correct protocols are followed.

struct RW_SLAVE_MEMORY_IN {

Page 15 of 37

Primitive Name & Description Prim. ID Prim. Version
RW_SLAVE_MEMORY
Accesses SDSP memory. 0x2000 100

Primitive structures:

APPENDIX C: ROD Primitives & Tasks

UINT32 sdspNum;
UINT32 read;
UINT32 *sdspAddress;
UINT32 *mdspAddress;
UINT32 numWords;

};

sdspNum: Indicates which of the four SDSPs (0-3) is being accessed.

read: If true, the SDSP memory is read from; otherwise it is written to.

sdspAddress: The starting address of the SDSP memory which is being accessed.

mdspAddress: The starting address of the MDSP memory which either will be written onto the
 SDSP, or, if reading, will receive the SDSP’s data. If set to the DEFAULT value,
 the primitive or reply buffer will be used, for reading and writing respectively.

numWords: The number of words to transfer.

This primitive allows an arbitrary serial stream to be transmitted from either or both of the
MDSP’s two serial ports. The command masks must be defined beforehand.

struct TRANS_SERIAL_DATA_IN {
UINT32 captureSerOn;
UINT32 streamLen[2], *streams;

};

Page 16 of 37

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
TRANS_SERIAL_DATA
Transmit a user-defined serial stream.

0x2001 100

Primitive structures:

Input & Output Arguments:

APPENDIX C: ROD Primitives & Tasks

captureSerOn: Flag indicating whether return data (if any) should be captured in the input
 FIFOs. This is obsolete, as the setting is determined by the Set ROD Mode
 primitive

streamLen[2]: The lengths of the serial streams to be transmitted from port 0 and 1. A length
 of zero indicates that no data will be transmitted from that port.

streams: This is a dummy pointer. The stream data is placed in the body of the primitive
 starting from the address of the streams pointer; port 1 follows port 0.

struct START_SLAVE_EXECUTING_IN {
UINT32 sdspNum;
UINT32 commOn;
UINT32 slaveType; obsolete.
UINT32 timeoutInUsec;

};

struct START_SLAVE_EXECUTING_OUT {
UINT32 sdspNum;

};

sdspNum: Indicates which SDSP (0-3) should be booted, or, for the output, indicates that the
 SDSP has been successfully booted.

commOn: If set, the communications between the MDSP and the just-booted SDSP will be
 turned on; otherwise it will be left off. During normal running, communications
 should be turned on.

timeoutInUsec: The MDSP will wait until the timeout value has passed, or the SDSP has
 booted, whichever comes first.

Page 17 of 37

Primitive Name & Description Prim. ID Prim. Version
START_SLAVE_EXECUTING
Boot the indicated SDSP. The code must be preloaded.

0x2002 104

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
CONFIG_SLAVE
Obsolete primitive.

0x2003 102

APPENDIX C: ROD Primitives & Tasks

The ROD and BOC have a number of configurable registers that govern the behaviour of
different aspects of the board. For instance, the ROD has register sets which control and give the
status of the formatter FPGAs, as well as the EFB (Event Fragment Builder), Controller and
Router FPGAs. These are documented in the ROD Operations Manual, App. A. The primitive
can either operate on the entire register, or only operate on a user-defined field inside it.

struct RW_REG_FIELD_IN {
UINT32 registerID;
UINT32 offset;
UINT32 width;
UINT32 read;
UINT32 dataIn;

};

struct RW_REG_FIELD_OUT {
UINT32 dataOut;

};

registerID: The ID of the register being accessed.

offset: A bit offset into the register; this defines the least significant bit of the field.

width: The width of the field, in bits.

read: If set, then the register field is read; if not set, a read-modify-write is performed on the
 register field.

dataIn: If writing, the input field data.

dataOut: If reading, the field value.

Page 18 of 37

Primitive Name & Description Prim. ID Prim. Version
RW_REG_FIELD
Read or modify one of the ROD’s (or BOC’s) FPGA registers. 0x2004 105

Primitive structures:

Input & Output Arguments:

APPENDIX C: ROD Primitives & Tasks

Poll Register Field is a companion primitive to Read/Write Register Field; it tests a field within
the indicated ROD register for a specific value. If not found immediately, the primitive will loop
until either it is found, or the timeout value is reached.

struct RW_REG_FIELD_IN {
UINT32 registerID;
UINT32 offset;
UINT32 width;
UINT32 desiredValue;
UINT32 timeoutInUsec;

};

struct RW_REG_FIELD_OUT {
UINT32 found;

};

registerID: The ID of the register being accessed.

offset: A bit offset into the register; this defines the least significant bit of the field.

width: The width of the field, in bits.

desiredValue: The data which the polled field value will be tested against.

timeoutInUsec: A timeout value, in micro-seconds.

found: Boolean indicating whether the desired field value has been found or not.

The ROD contains several user-controlled FIFO (First In, First Out) buffers, which allow a test
data stream to be injected at various points in the data processing. This primitive allows the user
to access these FIFOs.

The input memories, also known as the “inmems,” can store incoming data as it enters the ROD
(at the input of the formatters, irrespective of whether it actually is entering the formatters); the

Page 19 of 37

Primitive Name & Description Prim. ID Prim. Version
POLL_REG_FIELD
Poll a ROD register field, testing for a specific value. 0x2005 105

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
RW_FIFO
Access one of the ROD’s FIFO banks. 0x2006 104

APPENDIX C: ROD Primitives & Tasks

input memories can also simulate a short data sequence by playing out preloaded data into the
formatters. The debug memories exist on Rev. B & Rev. C RODs only. They can play out data
into the Event Fragment Builder instead of the formatters, or they can trap the output of the
formatters.

The event memories are part of the normal data path (inside the EFB); memory banks A and B
store event data from the formatters (formatters 0-3 and 4-7 respectively) until the event has
finished transmitting, whereupon the header and trailer information from memory bank C is
attached and the event is sent to the router. The event memories can also be configured to play
out data on user command, or be read out to display any trapped data.

The TIM FIFO is an 8 bit wide FIFO with the same depth as the input memories, which is used
to simulate the input from the TIM to the ROD during a simulated event being played out of the
input memories to the formatters.

On a Rev. B or C ROD, the inmems are 4K bits deep, on a Rev. E ROD their depth increases to
32K bits. Event memories A and B contain 16K words each, and event memory C is 256 words.

struct RW_FIFO_IN {
UINT32 fifoId;
UINT32 bank;
UINT32 read;
UINT32 numElements;
UINT32 *dataBaseAddr;

};
struct RW_FIFO_OUT {

UINT32 bytesXfrd;
};

#define INPUT_MEM 0x0 /* values of fifoID */
#define DEBUG_MEM 0x1
#define EVENT_MEM 0x2
#define TIM_MEM 0x3

#define BANK_A 0x0 /* values of bank; ignored for TIM_MEM */
#define BANK_B 0x1
#define BANK_C 0x2 /* EVENT_MEM only */

fifoId: The ID of the FIFO bank being accessed,.

bank: Indicates which bank inside the FIFO to access, where applicable.

read: If set, then the FIFO is read, otherwise it is written to.

Page 20 of 37

Primitive structures:

Input & Output Arguments:

APPENDIX C: ROD Primitives & Tasks

numElements: The number of elements to either read or write.

dataBaseAddr: Pointer to an address in memory where the data should be stored. If set to the
 DEFAULT value, this is a dummy pointer and the data is stored in the primitive
 itself, either right after dataBaseAddr for a write, or after bytesXfrd in the reply primitive for
 a read.

bytesXfrd: Indicates the total number of bytes transferred into or out of the FIFO.

During ROD operation, access to the SDSPs is normally restricted for the host processor (with
exceptions such as retrieval of histogram data, documented elsewhere), since the MDSP must
function as the ROD bus master when communicating with the SDSPs, or bus errors will result.
To send a primitive list to a SDSP, the host sends it to the MDSP using this primitive, and starts
it using the companion primitive Start Slave List. The MDSP then sends the list to the SDSP and
handles the handshake process which controls list execution.

struct SEND_SLAVE_LIST_IN {
UINT32 sdspNum;
UINT32 listLength;
UINT32 *sdspPrimList;
UINT32 *sdspRepData;

};

sdspNum: The ID (0-3) of the SDSP destined to receive the primitive list.

listLength: The length of the SDSP primitive list.

sdspPrimList: Pointer to the start of the SDSP primitive list data. If set to DEFAULT, the list is
 stored in the body of the Send Slave List primitive, just after the input structure,
 otherwise the list must be preloaded onto the MDSP at the indicated address.

sdspRepData: If set to DEFAULT, the SDSP reply list (if any) is stored in the body of the reply

Page 21 of 37

Primitive Name & Description Prim. ID Prim. Version
SEND_SLAVE_LIST
Send an embedded primitive list to a SDSP. 0x2007 103

Primitive structures:

Input & Output Arguments:

APPENDIX C: ROD Primitives & Tasks

 to the next Start Slave Executing primitive for that SDSP. If not DEFAULT, the
 reply data is stored at the indicated address on the MDSP.

Companion primitive to Send Slave List. If the reply data (if any) is needed, it is stored in a reply
to this primitive.

struct START_SLAVE_LIST_IN {
UINT32 sdspNum;
UINT32 pauseMdspList;
UINT32 getSdspReply;

};

sdspNum: The ID (0-3) of the SDSP, which must have a list already resident in its memory.

pauseMdspList: If set, the MDSP primitive list will pause at the Start Slave List primitive, until
 the SDSP is finished processing its list.

getSdspReply: If set, the MDSP will transfer the SDSP’s reply list (if any) to the address in its
own memory given by the sdspRepData argument of the Send Slave List primitive.

struct SLAVE_LIST_OP_IN {
UINT32 sdspNun;
UINT32 listOp;

};
#define LIST_PAUSE 0
#define LIST_RESUME 1
#define LIST_ABORT 2

Page 22 of 37

Primitive Name & Description Prim. ID Prim. Version
START_SLAVE_LIST
Start execution of a primitive list on a SDSP. 0x2008 103

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
SLAVE_LIST_OP
Pause, resume or abort a currently executing SDSP list.

0x2009 101

Primitive structures:

APPENDIX C: ROD Primitives & Tasks

sdspNum: The ID (0-3) of the SDSP.

listOp: The operation to perform, defined by the three constants above.

Used to build up custom command streams with pre-defined commands. Each primitive call may
add up to 6 FE or MCC commands, or a delay given in 25ns units. The command set is stored in
a serial port buffer, which is then sent out to the command links using the Send Stream primitive.

struct BUILD_STREAM_IN {
struct CmdList cmdList;
UINT32 port,
UINT32 reset,
UINT32 chip,
UINT32 fibre;
UINT32 dataLen;
UINT32 *data;

};
#define N_CMD_LIST_CMDS 6

typedef struct CmdList {
UINT16 cmd[N_CMD_LIST_CMDS];
UINT32 data[N_CMD_LIST_CMDS];

} CmdList;

CmdList cmdList: Structure containing the command list.

UINT32 port: Which serial port buffer to use; can be SP0 (0), SP1 (1), or SP_BOTH (2).

UINT32 reset: If set, the routine clears the command buffer (or buffers if both ports are used)
 Before creating the new command stream. If not set, the new set of commands
 are concatenated onto the end of the current command stream.

UINT32 chip: Commands supporting a chip address can be either sent to a specific chip, sent to
 ALL_CHIPS, or, if CHIP_ADDR_LOOP is used, sent to each chip individually
 in succession. For Commands which do not require a chip address, this parameter

Page 23 of 37

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
BUILD_STREAM
Command stream building primitive 0x200a 102

Primitive structures:

Arguments:

APPENDIX C: ROD Primitives & Tasks

 is ignored.

UINT32 fibre: SCT: The fibre that this command applies to.

UINT32 dataLen: For commands with too much data to place inside the CmdList structure (i.e.
 mask commands), dataLen specifies the actual length of the data. Right now
 only a (SCT) MASK command is supported; and only one such command can be in the list.

UINT32 *data: Dummy pointer which indicates the start of the data for a command with large
 amounts of data, if there is one.

After a command stream has been built using Build stream, this primitive is used to initiate the
data transmission (at 40 MHz) from one or both of the ROD’s serial ports.

struct SEND_STREAM_IN {
UINT32 port;
UINT32 captureSerOn;

};

port: Which serial port buffer to use; can be SP0 (0), SP1 (1), or SP_BOTH (2).

captureSerOn: Obsolete.

Loads or reads the entire module configuration structure. Modules which are present are assigned
to any of the three configuration structures: PHYSICS, SCAN and SPARE. The PHYSICS
structure contains the normal module state, in which it is assumed would be loaded for physics
data taking. During a scan the SCAN structure is used which initially is a copy of the PHYSICS
structure and is updated during a scan, for example with the current mask stage and current scan
parameter value.

struct RW_MODULE_DATA_IN {

Page 24 of 37

Primitive Name & Description Prim. ID Prim. Version
SEND_STREAM
Send the contents of the serial port buffer(s) to the modules. 0x200b 100

Primitive structures:

Input & Output Arguments:

Primitive Name & Description Prim. ID Prim. Version
RW_MODULE_DATA
Host <–> ROD module configuration data transfer 0x200C 102

Primitive structures:

APPENDIX C: ROD Primitives & Tasks

UINT32 read;
UINT32 structId;
UINT32 moduleNum;
Module *configData;

};

struct RW_MODULE_DATA_OUT {
Module configData;

};

#define PHYSICS_MODULE_CONFIG 0
#define SCAN_MODULE_CONFIG 1
#define SPARE_MODULE_CONFIG 2

read: Boolean variable indicating whether the primitive is reading or writing.

structId: The ID of the configuration structure set.

moduleNum: The module identifier (index).

configData: If writing, the start of the module configuration data is at the dummy pointer at the
 end of the input structure, and there is no output. If reading, the module
 configuration data is contained in the output structure.

struct Module {
 UINT16 maskEnableFEConfig; Bitfield specifying which FE are enabled for configuration
 UINT16 maskEnableFEScan; Bitfield to specify which FE will partake in data taking/scans
 UINT16 maskEnableFEDacs; Bitfield to enable FE DACs, 0 set all DACs to zero
 UINT16 unused; Padding

 PixelFEConfig FEConfig[N_PIXEL_FE_CHIPS+1]; FE Configuration structure
 PixelMCCRegisters MCCRegisters; MCC Register structure
 PixelTrimScanData trimScanData; Uniform trim-DAC data structure

 char idStr[128]; Module identification string
 UINT8 present; Set by master DSP if module is present, not set by user
 UINT8 active; Determines whether module will participate in scans (1 = on)
 UINT8 select; Not used (sepcified for SCT compatibility)

Page 25 of 37

Input & Output Arguments:

Module configuration structures:

APPENDIX C: ROD Primitives & Tasks

 UINT8 groupId; The ID of the module's group. This is used to indicate which slave DSP will
 receive the module's data (if group based distribution is set), and also to
 allow different module groups to be triggered independently (for cross-talk studies). Valid
 range: [0,7].
 UINT8 pTTC; Primary TX channel
 UINT8 unused1[3]; Padding
 UINT8 rx[4]; Data links used by module: 0, 0 & 1, or all
 UINT32 unused2[4]; Padding
}

struct PixelFEConfig {
 UINT8 FEIndex; Index of this FE
 PixelFECommand FECommand; Command register structure
 PixelFEGlobal FEGlobal; Global register structure
 PixelFEMasks FEMasks; Pixel control-bit structure
 PixelFETrims FETrims; Trim DAC data structure
 PixelFECalib FECalib; FE Calibration structure
}

struct PixelTrimScanData {
 UINT8 tdac, prevTdac; Current and previous uniform TDAC setting
 UINT8 fdac, prevFdac; Current and previous uniform FADC setting
}

struct PixelFECommand {
 UINT8 address; Geographical address of the FE
 UINT32 command; Unused
}

FE Global register map:
struct PixelFEGlobal {
 UINT32 latency : 8;
 UINT32 dacIVDD2 : 8;
 UINT32 dacIP2 : 8;
 UINT32 dacID : 8;
 UINT32 dacIP : 8;
 UINT32 dacITRIMTH : 8;
 UINT32 dacIF : 8;
 UINT32 dacITH1 : 8;
 UINT32 dacITH2 : 8;
 UINT32 dacIL : 8;
 UINT32 dacIL2 : 8;
 UINT32 dacITRIMIF : 8;
 UINT32 dacSpare : 8;
 UINT32 threshTOTMinimum : 8;
 UINT32 threshTOTDouble : 8;

Page 26 of 37

APPENDIX C: ROD Primitives & Tasks

 UINT32 capMeasure : 6;
 UINT32 muxTestPixel : 2;
 UINT32 dacMonLeakADC : 9;
 UINT32 dacVCAL : 9;
 UINT32 widthSelfTrigger : 4;
 UINT32 muxDO : 4;
 UINT32 muxMonHit : 4;
 UINT32 muxEOC : 2;
 UINT32 frequencyCEU : 2;
 UINT32 modeTOTThresh : 2;
 UINT32 enableTimestamp : 1;
 UINT32 enableSelfTrigger : 1;
 UINT32 spare : 1;
 UINT32 monMonLeakADC : 1;
 UINT32 monADCRef : 1;
 UINT32 enableMonLeak : 1;
 UINT32 statusMonLeak : 1;
 UINT32 enableCapTest : 1;
 UINT32 enableBuffer : 1;
 UINT32 enableVcalMeasure : 1;
 UINT32 enableLeakMeasure : 1;
 UINT32 enableBufferBoost : 1;
 UINT32 enableCP8 : 1;
 UINT32 monIVDD2 : 1;
 UINT32 monID : 1;
 UINT32 enableCP7 : 1;
 UINT32 monIP2 : 1;
 UINT32 monIP : 1;
 UINT32 enableCP6 : 1;
 UINT32 monITRIMTH : 1;
 UINT32 monIF : 1;
 UINT32 enableCP5 : 1;
 UINT32 monITRIMIF : 1;
 UINT32 monVCAL : 1;
 UINT32 enableCP4 : 1;
 UINT32 enableCinjHigh : 1;
 UINT32 enableExternal : 1;
 UINT32 enableTestAnalogRef : 1;
 UINT16 enableDigital : 1;
 UINT16 enableCP3 : 1;
 UINT16 monITH1 : 1;
 UINT16 monITH2 : 1;
 UINT16 enableCP2 : 1;
 UINT16 monIL : 1;
 UINT16 monIL2 : 1;
 UINT16 enableCP1 : 1;

Page 27 of 37

APPENDIX C: ROD Primitives & Tasks

 UINT16 enableCP0 : 1;
 UINT16 enableHitbus : 1;
 UINT16 monSpare : 1;
};

struct PixelFEMasks {
 1 bit per pixel in reverse order, e.g. maskEnable[4][0] = row 0(LSB) to 31(MSB) of column 0,
 maskEnable[0][17] =R128(LSB)-159(MSB) of C17
 UINT32 maskEnable[5][N_PIXEL_COLUMNS];
 UINT32 maskSelect[5][N_PIXEL_COLUMNS];
 UINT32 maskPreamp[5][N_PIXEL_COLUMNS];
 UINT32 maskHitbus[5][N_PIXEL_COLUMNS];
}

struct PixelFETrims {
 UINT8 dacThresholdTrim[N_PIXEL_ROWS][N_PIXEL_COLUMNS];
 UINT8 dacFeedbackTrim[N_PIXEL_ROWS][N_PIXEL_COLUMNS];
}

struct PixelFECalib{
 FLOAT32 cinjLo; Low injection capacitance in fF
 FLOAT32 cinjHi; High injection capacitance in fF
 FLOAT32 vcalGradient; VCAL DAC gradient in mV/count
 FLOAT32 chargeCoeffClo; Calculated scaling factor DAC counts to electrons
 FLOAT32 chargeCoeffChi;
 FLOAT32 chargeOffsetClo; For correcting offsets in internal injection
 FLOAT32 chargeOffsetChi;
 FLOAT32 monleakCoeff; Calibration of MONLEAK ADC, nA/count
}

struct PixelMCCRegisters {
 UINT16 regCSR;
 UINT16 regLV1;
 UINT16 regFEEN;
 UINT16 regWFE;
 UINT16 regWMCC;
 UINT16 regCNT;
 UINT16 regCAL;
 UINT16 regPEF;
}

Page 28 of 37

APPENDIX C: ROD Primitives & Tasks

Loads or reads a single variable to/from a given configuration structure for a given module.
Modules which are present are assigned three configuration structures; PHYSICS, SCAN and
SPARE. The PHYSICS structure contains the normal module state which it is assumed would be
loaded for physics data taking. During a scan the SCAN structure is used which initially is a
copy of the PHYSICS structure and is continually updated during a scan for example with the
current mask stage and current scan parameter value. WARNING: needs more testing & write-
up!

struct RW_MODULE_VARIABLE_IN {
UINT32 read, structId, groupId, module, chip, varType, dataLen;
MDAT32 *data;

};
struct RW_MODULE_VARIABLE_OUT {

UINT32 dataLen;
MDAT32 *data;

};

UINT32 read: 1 if reading, 0 if writing

UINT32 structId: 0 = Physics, 1 = Scan, 2 = Spare

UINT32 module: The module identifier

UINT32 chip: The index of the FE chip if relevant

UINT32 varType: The variable type to write/read:

(Currently supported parameters, more to come)….

Page 29 of 37

Primitive Name & Description Prim. ID Prim. Version
RW_MODULE_VARIABLE
Host <–> ROD module configuration data transfer 0x2010 101

Primitive structures:

Arguments:

APPENDIX C: ROD Primitives & Tasks

Defined in primParams.h:
MVAR_GROUP_ID (100): The module group with which this module is associated with.
 Module groups are used by the histogram control task to
 associate modules to a given SDSP; see the control task’s description for further
 details.

MVAR_ACTIVE (101): Indicates whether a module is active in a scan.
MVAR_SELECT (102): For SCT modules, if set indicates that the module is using the
 redundant command link. Not used by Pixel modules.

Defined in pixelScanStructures.h:
SCAN_IVDD2 (1): Module->FEConfig[chip]. FEGlobal.dacIVDD2
SCAN_ID (2): Module->FEConfig[chip].FEGlobal.dacID
SCAN_IP2 (3): Module->FEConfig[chip].FEGlobal.dacIP2
SCAN_IP (4): Module->FEConfig[chip].FEGlobal.dacIP
SCAN_TRIMT (5): Module->FEConfig[chip].FEGlobal.dacITRIMTH
SCAN_IF (6): Module->FEConfig[chip].FEGlobal.dacIF
SCAN_TRIMF (7): Module->FEConfig[chip].FEGlobal.dacITRIMIF
SCAN_ITH1 (8): Module->FEConfig[chip].FEGlobal.dacITH1
SCAN_ITH2 (9): Module->FEConfig[chip].FEGlobal.dacITH2
SCAN_IL (10): Module->FEConfig[chip].FEGlobal.dacIL
SCAN_IL2 (11): Module->FEConfig[chip].FEGlobal.dacIL2
SCAN_LATENCY (13): Module->FEConfig[chip].FEGlobal.latency
SCAN_TDACS (14): Module-> trimScanData.tdac (global uniform TDAC)
SCAN_FDACS (15): Module-> trimScanData.fdac (global uniform FDAC)
SCAN_VCAL (24): Module-> FEConfig[chip].dacVCAL

UINT32 dataLen: The length of the data field

MDAT32 *data: Pointer to the data

Page 30 of 37

APPENDIX C: ROD Primitives & Tasks

Loads a given module configuration set, or subset thereof, onto the physical module(s). Two
modules can be configured at once.

struct SEND_CONFIG_IN {
UINT32 port, captureSerOn, moduleNum[2], chipNum,

 setLinks, restore, structId, groupId, dataType,
 activeOnly, enableDataTaking;

};

UINT32 port: Serial port to transmit data. Can be SP0 (0), SP1 (1), or SP_BOTH (2). If both
 ports are used and two modules are defined (moduleNum[]), the data will be sent
 in parallel.

UINT32 captureSerOn: TBD.

UINT32 moduleNum[2]: Module indices from the module configuration database. If
 configuration of all modules is desired, set to ALL_MODULES
 (0xfe). If only one module is desired, set the second index to NO_MODULE (0xff).

UINT32 chipNum: FE chip index; all config-enabled FE chips are configured if chipNum=
 ALL_CHIPS (Pixel: 0x10, SCT: 0x3F).

UINT32 setLinks: 1 = Set command links automatically.

UINT32 restore: If setLinks is set, restore commands the MDSP to restore the ROD’s links to
 their original state after the configuration data has been sent.

UINT32 structId: 0 = Physics, 1 = Scan, 2 = Spare

UINT32 groupId: If set to a specific group ID (0-7), then only modules from that group will
 be configured. If set to MODULE_GROUP_ALL (8), this field is ignored.

UINT32 dataType: Bitfield of which config data to send according to:

FE ENABLE mask: bit 0
FE SELECT mask: bit 1

Page 31 of 37

Primitive Name & Description Prim. ID Prim. Version
SEND_CONFIG
ROD -> module(s) configuration data transfer 0x200D 105

Primitive structure:

Arguments:

APPENDIX C: ROD Primitives & Tasks

FE PREAMP mask: bit 2
FE HITBUS mask: bit 3
FE TDAC0 mask: bit 4
FE TDAC1 mask: bit 5
FE TDAC2 mask: bit 6
FE TDAC3 mask: bit 7
FE TDAC4 mask: bit 8
FE FDAC0 mask: bit 9
FE FDAC1 mask: bit 10
FE FDAC2 mask: bit 11
FE FDAC3 mask: bit 12
FE FDAC4 mask: bit 13
FE GLOBAL register data: bit 16
All four FE control bits: bit 17
All FE TDAC bits: bit 18
All FE FDAC bits: bit 19
All FE uniform (scan) TDAC values: bit 20
All FE uniform (scan) FDAC values: bit 21
Full MCC register configuration: bit 22
Full FE + MCC configuration: bit 23

UINT32 activeOnly: Toggles whether active modules only are sent the configuration; 1 = YES

UINT32 enableDataTaking Toggles whether MCC is prepared for data taking (triggers) at the end of the
operation; 1 = YES

Command options are defined (in pixelCommands.h) according to:
 FE (no commands with data supported – use RW_MODULE_DATA & SEND_CONFIG for these):
 PIX_FE_NULL (1)
 PIX_FE_SOFT_RESET (2)
 PIX_FE_WRITE_GLOBAL (3)
 PIX_FE_READ_GLOBAL (4)
 PIX_FE_WRITE_HITBUS (5)
 PIX_FE_WRITE_SELECT (6)
 PIX_FE_WRITE_PREAMP (7)
 PIX_FE_WRITE_ENABLE (8)
 PIX_FE_WRITE_TDAC0 (9)
 PIX_FE_WRITE_TDAC1 (10)
 PIX_FE_WRITE_TDAC2 (11)
 PIX_FE_WRITE_TDAC3 (12)

Page 32 of 37

APPENDIX C: ROD Primitives & Tasks

 PIX_FE_WRITE_TDAC4 (13)
 PIX_FE_WRITE_FDAC0 (14)
 PIX_FE_WRITE_FDAC1 (15)
 PIX_FE_WRITE_FDAC2 (16)
 PIX_FE_WRITE_FDAC3 (17)
 PIX_FE_WRITE_FDAC4 (18)
 PIX_FE_READ_PIXEL (19)
MCC fast:
 PIX_MC_TRIGGER (101) L1A trigger command
 PIX_MC_ECR (102) Event count reset
 PIX_MC_BCR (103) Beam crossing count reset
 PIX_MC_SYNC (104) SYNC command. Data field gives SYNC length Note: not yet.
 PIX_MC_CAL (106) Calibration pulse command
Delay:
 DELAY (112) Add delay of data crossings
MCC slow:
 PIX_MC_RD_REGISTER (151) Read register command, data[0:3] = address
 PIX_MC_RD_FIFO (152) Read receiver FIFO command, data[0:3] = address
 PIX_MC_EN_DATA_TAKE (153) Puts the MCC into fast command mode
 PIX_MC_RESET_MCC (154) MCC reset command
 PIX_MC_RESET_FE (155) Issue hard reset to FEs
 PIX_MC_WR_REGISTER (201) Write data[16:31] to register with address data[0:3]
 PIX_MC_WR_FIFO (202) Write data[4:31] to FIFO with address data[0:3]
 PIX_MC_WR_RECEIVER (251) Not supported yet.

This task coordinates the all the activities that must occur on the ROD during a histogram scan.
Note: Feature which are still being defined are given in bold italics.

typedef struct { //Unused members are for data alignment.

UINT8 configSet; /* The configuration set to use (INIT/WORK/SPARE) */
UINT8 reportErrors; /* Toggle to enable data integrity checks on SDSPs */
UINT8 globalCtrl; /* Determines whether MDSP or TIM sends triggers */

UINT8 moduleScanMode; /* Concurrent (0) or FE by FE (1) */

UINT8 scanParameter[2]; /* Scan parameter specifier. Global register only. */
UINT8 uniformPoints[2]; /* If TRUE scanStart, scanEnd & nBins determine points */

MDAT32 scanStart[2]; /* Start value for uniform scan */
MDAT32 scanEnd[2]; /* End value for uniform scan */

#if defined(SCT_ROD)

Page 33 of 37

Task Name & Description Task ID Task Version
HISTOGRAM_CTRL
Controls an entire histogram scan. 0x10 107

Primitive structures:

APPENDIX C: ROD Primitives & Tasks

 UINT16 nBins, unused; /* # of bins */
#elif defined(PIXEL_ROD)

UINT16 nBins[2]; /* # of bins in inner & outer loop */
#endif

UINT32 repetitions; /* # of events per bin */
MDAT32 *dataPtr[2]; /* pointers to data for custom scans; 0xffffffff
 (DEFAULT) indicates that data is in the primitive list

 right after the scan structure. */

UINT8 maskMode; /* Staged (0) or static (1) */
UINT8 stageAdvanceFirst; /* Indicates that the innermost loop is the mask stage */
UINT16 maskStages; /* Number of mask stages to actually execute in scan */

#if defined(SCT_ROD)
 UINT8 stage0; /* Initial Mask stage. */
 UINT8 unused1;

 #elif defined(PIXEL_ROD)
 UINT8 maskStageMode; /* Mask staging option i.e. which ctrl bits are

 staged */
 UINT8 maskStagePattern; /* Mask stage pattern option e.g. 32-stage, 160-stage

 etc. */
#endif

UINT16 unused2;
 UINT8 unused3;

UINT8 currentChip; /* Current chip being scanned if FE-by-FE mode */
UINT16 currentMaskStage; /* Current mask stage */
UINT16 currentBin[2]; /* Current scanning point */

 UINT32 unused4;

} ScanGeneral; /* General scan parameters */

typedef struct {
UINT32 *base;
UINT8 opt[4];
UINT8 extSetup
UINT8 errors
#if defined(SCT_ROD)
UINT8 unused[2];
#elif defined(PIXEL_ROD)
UINT8 errorsMCC;
UINT8 unused;
#endif

} ScanRODSetup; /* Histogramming options */

Page 34 of 37

APPENDIX C: ROD Primitives & Tasks

typedef struct {
UINT8 definedGroups; /* bitfield indicating which groups are included in scan */
UINT8 nDspPairs; /* The # of SDSP pairs. A DSP pair use complementary SP

 and receive their trigger streams simultaneously; used
 for interference/ cross-rtalk checks. */

UINT8 slvBits; /* Indicates which SDSPs participate in scan. */
UINT8 unused0;

UINT8 dspPair[2][2]; /* The DSP pairs. */
#if defined(SCT_ROD)
UINT8 groupRangeMap[2]; /* SCT: Bitfield indicating which mapping groups use. */

#elif defined(PIXEL_ROD)
UINT8 unused[2];
#endif
UINT8 groupSPMap[2]; /* Bitfield indicating which serial port groups use. */
UINT8 groupDSPMap[4]; /* Bitfields indicating to which SDSP groups send events.*/

} ScanDspDistribution; /* Histogramming options */

typedef struct {
struct CmdList triggerSequence[2];
#if defined(SCT_ROD)
UINT32 incData[2]; /* SCT: amount to increment command data by between bins. */
UINT8 incCmd[2]; /* SCT: index of command (typ. delay cmd) to increment */
UINT8 port; /* Serial ports to use: 0, 1 or both (2) */
UINT8 unused;
#elif defined(PIXEL_ROD)
UINT8 calcFromStruct; /* Pixel: indicates that the serial stream (cal. pulse/ delay/ L1A)
 should be calculated from the scan control structure. */
UINT8 port; /* Serial ports to use: 0, 1 or both (2) */
UINT8 unused[2];
#endif

} ScanSerialData;

typedef struct {
ScanGeneral general;
PixelScanStrobe strobe;
PixelScanTrigger trigger;
PixelScanReset reset;
PixelScanFE fe;
PixelScanMCC mcc;

Page 35 of 37

APPENDIX C: ROD Primitives & Tasks

PixelScanFitting fitting;
ScanRODSetup rodSetup;
ScanDspDistribution dspDist;
ScanSerialData serial;

} ScanControl;

struct HISTOGRAM_CTRL_TASK_IN {
ScanControl scanControl;

};

struct PixelScanStrobe Strobe conditioning
{

UINT16 duration; Length of strobe in BCO units
UINT8 delay; Strobe delay setting on MCC
UINT8 delayRange; Strobe delay range on MCC

}

struct PixelScanTrigger Trigger conditioning
{

UINT8 accepts; Number of actual contiguous LV1 triggers in event (1-16)
UINT8 self; Selects module self-triggering mode (unsupported)
UINT8 latency; 8-bit trigger latency as programmed on FEs
UINT8 calL1ADelay; sets the delay (in BCO units) in the serial stream between the

 calibration command and the L1A command
}

struct PixelScanReset Options for resetting modules (beginning of scan & between bins)
{

UINT8 binReset;
UINT8 softFE;
UINT8 shortSync;
UINT8 mediumSync;
UINT8 longSync;
UINT8 ECR;
UINT8 BCR;
UINT8 moduleInit;

}

struct PixelScanFE FE global register parameters which are set according to type of scan
{

Page 36 of 37

Arguments:

Pixel specific scan structures:

APPENDIX C: ROD Primitives & Tasks

UINT16 vCal; VCAL DAC
UINT8 cInject; Injection capacitor toggle (c-lo/c-high)
UINT8 phi; Column readout frequency
UINT8 totThresholdMode; Sets TOT threshold mode
UINT8 totMinimum; TOT minimum
UINT8 totTwalk; TOT double-hit for digital timewalk correction
UINT8 totLeMode; TOT or timestamp leading edge option
UINT8 hitbus; Global hitbus enable
UINT8 digitalInject; Turns on digital inject mode
UINT8 unused[2]; Padding

}

struct PixelScanMCC MCC options which depend on type of scan
{

UINT8 checkRegisters; Enable periodic checking of MCC warning registers
 UINT8 bandwidth; Bandwidth option (single-40, dual 80 etc.) (Unused)

UINT8 unused[2]; Padding
UINT16 enableFEContinuityCheck; Bit field as per FE
UINT16 enableFECrosscheck; Bit field as per FE

}

struct PixelScanFitting Options for fitting data acquired during scan
{

UINT8 sCurves; Fit s-curves to the occupancy histos
UINT8 totCalibration; Fit TOT calibration functions to TOT data
UINT8 tdacTune; Perform TDAC determination based on fit results
UINT8 tdacAlgorithm; Method for determining TDAC tune
UINT8 fdacTune; Perform FDAC tune based on data from scan
UINT8 calibrationOption; Standard time, standard charge or custom
UINT8 unused[2]; Padding
FLOAT32 chi2Cut; Flag fits with reduced chi-squared above this
FLOAT32 customScale; Scaling for custom s-curve calibration
FLOAT32 customOffset; Offset for custom s-curve calibration

}

Page 37 of 37

